WEBDEV2 – Notes – 2-Up game.
Introduction
Two-up is a traditional Australian gambling game, involving a designated "spinner" throwing two coins or pennies into the air. Players gamble on whether the coins will fall with both heads (obverse) up, both tails (reverse) up, or with one coin a head and one a tail (known as "odds"). It is traditionally played on Anzac Day in pubs and clubs throughout Australia, in part to mark a shared experience with diggers through the ages.
The game is traditionally played with pennies – their weight, size, and surface design make them ideal for the game. Weight and size make them stable on the "kip" and easy to spin in the air. Decimal coins are generally considered to be too small and light and they don't fly so well. The design of pre-1939 pennies had the sovereign's head on the obverse (front) and the reverse was totally covered in writing making the result very easy and quick to see. Pennies can often be observed being used at games on Anzac Day, as they are brought out specifically for this purpose each year.
(Source - https://en.wikipedia.org/wiki/Two-up)
Resources required
You have on your USB the required graphics for this session.
The Penny images, tales.png and obverse.png.
[image:][image:]
And the Kip (kip.jpg)
[image:]

Game Play
First the player is asked how much money they wish to start with, how much their first bet will be and do they either choose Obverse (heads) or Reverse (tales).
The player then is to click on the Kip to play the game.
When the page reloads, it will show the 2 coins as they fell randomly.
The page will inform the player if they won or lost and how much they won / lost.
This will automatically be added / deducted from their starting balance.
Only if the player has enough balance can the player play again.
To play again, the player is asked whether they choose Obverse or Reverse and how much they wish the bet. These values must be sticky from the first page.
This game plays out until the player runs out of money, loses interest or clicks on the Start Again button which clears all the recorded values.

Required Elements
· PHP self-receiving HTML form.
· Sessions
· Data validation

PHP Self Receiving Form
In PHP, there is the ability of a web form to submit the data to itself. All the data posted from a web-form is returned in the form of an array of strings. This variable is accessed using $_POST[‘fieldName’]. The field name is whatever the input is called.
So, if we have a field called ‘Bank’ it would look like this:
<label for=”bank”>How much money did you start with?</label><input type=”text” name=”bank”>
You could access this data once submitted calling the variable $_POST[‘bank’].
To get the form to submit to itself, it relies on some simple logic.
<?
if(!$_POST[‘submit’]){
?>
With the exclamation mark (!) often called a Bang! Symbol, in front of the $_POST[‘submit’] – this checked to see if the variable is not present, ie. The form has NOT been submitted yet.
The form would look something like this:
<h1>2-Up a traditional Australian game</h1>
<form action="<?=$_SERVER['php_self']?>" method="POST">
<p><label for="bank">How much money will you start with?</label><input type="text" name="bank"></p>
<p><label for="bet">How much would you like to place as your first bet?</label><input type="text" name="bet"></p>
<p><label for="choice">What would you like to bet on?</label>
<select name="choice">
<option value="0">Obverse</option>
 	<option value="1">Reverse</option>
</select></p>
<p><button type="submit" name="submit" value="submit">Place 2-Up!</button></p>
</form>

Then after the form you would add the following PHP code that would be executed if the first if statement was found to be false (that the form HAD been submitted).
<?
}else{
//Do whatever with the form data here
}
?>

Sessions
Sessions are an option you can use where the server holds specific data about your page in memory. They remain active in the server while your connection to the server is active (within 15 minutes) or until you close the page tab and close the browser.
You can also store variables which you assign to the session and recall them as required.
To use sessions in an PHP page, you first need to tell the server that this page uses sessions. You do this on the very first line of code with the function session_start(); like below:
<? session_start(); ?>
<!doctype html>
<html>

Now, with the sessions we can store variables from the game and have them available every time we play the game.
For example, our starting amount of money (our bank) can be initiated, and then added to or removed from each time the player either wins or loses.
$_SESSION[‘bank’] = $_POST[‘bank’];

Basic code structure and logic
}else{
	$bank = $_POST['bank'];
	$bet = $_POST['bet'];
	$choice = $_POST['choice'];
//data sanitization will go here.
	$r[] = rand(0,1); //Coin 1
	$r[] = rand(0,1); //Coin 2
	if(!$_SESSION['bank']){$_SESSION['bank'] = $bank;}
	if($_SESSION['bank']>0){
		if($r[0]==0){
			echo "";	
		}else{
			echo "";
		}
		if($r[1]==0){
			echo "";	
		}else{
			echo "";
		}
		if($r[0] != $r[1]){ echo "<h1>Mismatch!</h1><p>Play again</p>";
			bet($_POST);
		}else{
			echo "<h2>You chose ";
			if($choice==0){echo "Obverse";
			}else{
				echo "Reverse";	
			}
			echo "</h2>";
			if($choice==$r[0]){
				//winner winner chicken dinner
				echo "<h2>You are a winner!</h2>";
				echo "<p>You won $" . $bet . "</p>";
				$_SESSION['bank']+=$bet;
			}else{
				//Loser
				echo "<h2>You didn't win this time.</h2>";
				echo "<p>You just lost $" . $bet . "</p>";
				$_SESSION['bank']-=$bet;
			}
			echo "<h3>You have $" . $_SESSION['bank'] ." left.</h3>";
			if($_SESSION['bank']>0){
				echo "<h1>Bet again?</h1>";
				bet($_POST);
			}else{
				noMoolah();	
			}
		}
	}else{
		//Run out of money. GO home.
		noMoolah();
	}
}
function noMoolah(){
		echo "<h1>I'm sorry, you have lost all your money.</h1>
		<p>You cannot play anymore. It's time to go (walk) home.</p>";
		echo "<p>Start again from the beginning.</p>";		
}

function bet($post){
?>
<form action="<?=$_SERVER['php_self']?>" method="POST">
<p><label for="bet">How much would you like bet?</label><input type="text" name="bet" value="<?=$post['bet']?>"></p>
<p><label for="choice">What would you like to bet on?</label>
<select name="choice">
	<option value="0" <? if($post['choice']=="0"){echo "selected";}?>>Obverse</option>
 <option value="1" <? if($post['choice']=="1"){echo "selected";}?>>Reverse</option>
</select></p>
<p><button type="submit" name="submit" value="submit">Place 2-Up!</button></p>
</form>
<?	
}
?>

Data sanitization / correction
Currently, there are no error corrections. The game will allow you to introduce deliberate errors which may or may not have an expected outcome.
For example, the game will allow you to play even if there is a negative amount in the bank.
The game will allow you to enter a non-number into the bet including nothing at all.
The perfect place to check the data is as soon as the form has been submitted.
I have included a comment where the data sanitization should go.
The first check will be for an empty field.
if(!$bet){ $error[] = “You did not enter a bet. Please enter a bet to play this game.”;}
The $error[] variable is an array where all the errors will be stored. Without an index listed in the [] section of the variable, PHP will place the error into the first available empty index – in this case, index 0 ($error[0]);
So we now need to script the game to first see if there are any errors, and if so, display the errors and redisplay the form.
if($error){
//an error exists
}else{
//no errors, continue on with game.
//existing code goes here.
}

You now display the errors by using an ‘foreach’ loop.
if($error){
//an error exists
echo "<div class=\"error\">";
foreach($error as $val){
	echo "<p>".$val."</p>";
}
echo "</div>";
bet($_POST);
}else{
//no errors, continue on with game.
//existing code goes here.
}

Some other error checking you might wish to add.
To check in the entered value is an integer (number). To check this, you use the is_numeric() function which either returns true or false.
if(!is_numeric($bet)){ $error[] = "You did not enter a number. Please enter a number into the bet field to play this game.";}

Another check could be that the user does not bet more than what they have available in the bank. To do this, we need to move the $_SESSION[‘bank’] code to before the error check to ensure that it would be initially set the first time the game is played.
if(!$_SESSION['bank']){$_SESSION['bank'] = $_POST['bank'];}
if($bet>$_SESSION['bank']){ $error[] = "You did not enter a number. Please enter a number into the bet field to play this game.";}

Once all the error checks are done, and if there is an error you must redisplay the bet form after the errors have been shown. You do this by calling the bet() function.
Includes
Includes are a file which contain pieces of code which can be used by all pages which include them. Includes are a great way to tidy up your code.
When you include or require an include file, the server parses the code as if it is part of the original page. All functionality is now available to the requestion page.
There are two methods of including, using the include() method or the require() method.
Include() will read the file into the page. If any error is encountered, the page will continue to load whereas the require() method will stop the loading of the page if any error in locating the include file is found.
include(“path_to_file.php”);
Or
require(“path_to_file.php”);
You would usually add the include or require at the very top of the page immediately under the session_start() script.

Production code for the game
The final code is below. More functionality can be added – this is just a simple guide.
Index.php
<? session_start();
require("includes.ini.php");
?>
<!doctype html>
<html>
<head>
<meta charset="UTF-8">
<title>2Up</title>
</head>

<body>
<?
if(!$_POST['submit']){
	session_destroy();
	firstGameForm();
}else{
	$bet = $_POST['bet'];
	$choice = $_POST['choice'];
	
	if(!$_SESSION['bank']){$_SESSION['bank'] = $_POST['bank'];}
	if($bet>$_SESSION['bank']){ $error[] = "You have tried to bet more money than you have left.";}
	if(!$bet){ $error[] = "You did not enter a bet. Please enter a bet to play this game.";}
	if(!is_numeric($bet)){ $error[] = "You did not enter a number. Please enter a number into the bet field to play this game.";}
	
	if($error){
		echo "<div class=\"error\">";
		foreach($error as $val){
			echo "<p>".$val."</p>";
		}
		echo "</div>";
		if($_POST['step']){
			firstGameForm();	
		}else{
			echo "<h3>You have $" . $_SESSION['bank'] ." left.</h3>";
			bet($_POST);
		}
	}else{
		$r[] = rand(0,1); //Coin 1
		$r[] = rand(0,1); //Coin 2
		
		if($_SESSION['bank']>0){
			if($r[0]==0){
				echo "";	
			}else{
				echo "";
			}
			if($r[1]==0){
				echo "";	
			}else{
				echo "";
			}
			if($r[0] != $r[1]){ echo "<h1>Mismatch!</h1><p>Play again</p>";
			bet($_POST);
			}else{
				echo "<h2>You chose ";
				if($choice==0){echo "Obverse";
				}else{
					echo "Reverse";	
				}
				echo "</h2>";
				if($choice==$r[0]){
					//winner winner chicken dinner
					echo "<h2>You are a winner!</h2>";
					echo "<p>You won $" . $bet . "</p>";
					$_SESSION['bank']+=$bet;
				}else{
					//Loser
					echo "<h2>You didn't win this time.</h2>";
					echo "<p>You just lost $" . $bet . "</p>";
					$_SESSION['bank']-=$bet;
				}
				echo "<h3>You have $" . $_SESSION['bank'] ." left.</h3>";
				if($_SESSION['bank']>0){
					echo "<h1>Bet again?</h1>";
					bet($_POST);
				}else{
					noMoolah();	
				}
			}
		}else{
			//Run out of money. GO home.
			noMoolah();
		}
	}
}
?>
</body>
</html>

[bookmark: _GoBack]Includes.ini.php
<?
function noMoolah(){
	echo "<h1>I'm sorry, you have lost all your money.</h1>
	<p>You can not play any more. It's time to go (walk) home.</p>";
	echo "<p>Start again from the beginning.</p>";		
}

function bet($post){
?>
<form action="<?=$_SERVER['php_self']?>" method="POST">
<p><label for="bet">How much would you like bet?</label><input type="text" name="bet" value="<?=$post['bet']?>"></p>
<p><label for="choice">What would you like to bet on?</label>
<select name="choice">
	<option value="0" <? if($post['choice']=="0"){echo "selected";}?>>Obverse</option>
 <option value="1" <? if($post['choice']=="1"){echo "selected";}?>>Reverse</option>
</select></p>
<p><button type="submit" name="submit" value="submit">Place 2-Up!</button></p>
</form>
<?	
}
function firstGameForm(){
	?>
<h1>2-Up a traditional Australian game</h1>
<form action="<?=$_SERVER['php_self']?>" method="POST">
<p><label for="bank">How much money will you start with?</label><input type="text" name="bank"></p>
<p><label for="bet">How much would you like to place as your first bet?</label><input type="text" name="bet"></p>
<p><label for="choice">What would you like to bet on?</label>
<select name="choice">
	<option value="0">Obverse</option>
 <option value="1">Reverse</option>
</select></p>
<p><button type="submit" name="submit" value="submit">Place 2-Up!</button></p>
<input type="hidden" name="step" value="first" />
</form>
<?
}
?>
image1.png

image2.png

image3.jpg

